Estimating Solute Release from Mining Operations

Kim Lapakko Minnesota DNR USGS Bad River Mining Workshop 12-14 September 2011

BACKGROUND

- NEW MINE CHANGES LANDSCAPE
 - Physical
 - Geochemical

 NEW MINING CONCERN Water quality impacts

Some Pits Serve as Municipal Water Supply

Other Pits Don't

BACKGROUND

TO ADDRESS CONCERN

 NEED PRIOR TO OPERATION Estimates of solute release from source terms

• ESTIMATES USED

- Impact assessment
- Mitigation design
- Financial assurance

From Carol Russell

BACKGROUND

- MINE WASTES OF CONCERN
 - Mine
 - Waste Rock
 - Tailings
 - Metallurgical wastes
 - Other

BACKGROUND

- WATER QUALITY CONCERNS
 - Acidic drainage
 - Neutral drainage with heavy metals
 - Neutral drainage with sulfate
 - Process related solutes

OBJECTIVE: ESTIMATE SOLUTE RELEASE FROM MINE WASTES GENERAL APPROACH

- 1. Determine baseline conditions
- 2. Impose mine plan
- 3. Mine waste geochemical characterization
 - 3.1. Existing information
 - 3.2. Conduct tests (some peripheral information)
- 4. Develop model to estimate release

1. BASELINE CONDITIONS

- Water quality
- Hydrology
 - Surface
 - Ground water
- Soils
- Glacial overburden
- Bedrock
- Climate (Precipitation, Temperature)
- Topography
- Other

2.1. Conventional economic components

- $-\operatorname{Mine} \rightarrow \rightarrow \operatorname{Ore}$
- Mineral Processing $\rightarrow \rightarrow$ Concentrate
- Metallurgy $\rightarrow \rightarrow$ Refined product

- 2.2. Environmental components
 - Mine $\rightarrow \rightarrow$
 - Mine walls and floor
 - Waste rock
 - Mineral processing $\rightarrow \rightarrow$ Tailings (coarse, fine)
 - Metallurgy $\rightarrow \rightarrow$
 - Slag
 - Hydrometallurgical wastes

2.2. Environmental components

Waste Rock Information for Modeling

- Rock units present
- Mass of rock units
- Compositional variation of rock units

2. Impose Mine Plan

2.2. Environmental Components

- Drill core data for waste rock
 - Logging (e.g. rock types, visual examination)
 - Chemical analysis
 - Mineralogy/Petrology
- Mineral processing pilot tests
- Metallurgical processing pilot tests

- 2.3. Mine Waste Management
- Water treatment
- Covers
 - Soil + Vegetation
 - Clay
 - Geotextiles
- Subaqueous

3. Geochemical Characterization

3.1. Existing information: Rock \rightarrow Water

- Baseline water quality
- Soil signatures
- Vegetative signatures
- Geological description
- Geoenvironmental model
 - Solute release related to rock composition
 - Solute release related to mining and processing

3. Geochemical Characterization

3.1. Existing information

- Drill core data for waste rock
- Mineral processing pilot tests
 - Tailings composition
 - Water quality
 - Release rates
- Metallurgical processing pilot tests

3. Geochemical Characterization

3.2. Conduct tests

- Why?
 - Better understand rock \rightarrow water quality
- On what?
 - Drill core
 - Tailings from mineral processing tests
 - Wastes from metallurgical tests

Geochemical Characterization
3.2. Conduct tests

Drainage quality = f(solid-phase characteristics)

- Solid-phase characterization
 - Chemical analysis (What's here? How much?)
 - Mineralogical/petrological analysis (How occurs?)
 - Metal partitioning (How readily released?)
 - Static tests (acid and neutralization potentials)
 - (See White et al. 1999)

Duluth Complex drill core

sulfide

Core is 2" in diameter (vertical dimension in photo).

Pyrite included in +2000 µm rock particle

Partially exposed pyrite in 75-150 μm particle

Liberated pyrite in 75-150 size fraction

Framboidal Pyrite is Bumpy and has High Area/Unit Mass

Geochemical Characterization 3.2. Conduct tests

- Short-term dissolution tests (soluble salts)
- Kinetic tests (long-term dissolution tests)

- Soluble salts, other mineral dissolution

3.2. Conduct tests ASTM 5744 kinetic testing of waste rock

Provide rates for modeling solute release in field

Test representative samples.

ASTM 5744

Mine Waste Dissolution Test Method

- Provides detailed description of protocol
 - Provide guidance for new practitioners
 - Promote method consistency
 - Increase reproducibility of results
- See Bucknam et al. 2009 for changes

ASTM 5744 Protocol

• 1 kg sample used for testing

• Waste rock particle diameter < 6.25 mm

- Characterize sample
 - Particle size distribution
 - Chemistry
 - Mineralogy

ASTM Humidity Cell

ASTM 5744 Protocol

- React with air, humidity in cell for 1 week
- Rinse on seventh day (500 or 1000 mL)
- Analyze drainage for
 - pH
 - Acidity, alkalinity
 - Sulfate
 - Other solutes

Determine SO₄ release rates for Archean Greenstone, 1.22% S

Average sulfate rates: µmol(kg•wk)⁻¹

4. Modeling Lab to Field?

4. Modeling lab to field~1000 t Duluth Complex Test Piles

4. Modeling lab to field~60-ton test piles & barrel tests

4. Lab to Field Modeling: A general description.

- Practical modeling to inform mine waste management decisions
- Focus on waste rock
- Interface of geochemistry and regulation
- Don't have all answers

Conceptual view of waste rock pile (Gard Guide).

Guidance (see NRC 2007)

- Transparency (balance simplicity < > rigor)
- Computational checks on calculations (e.g. vs. simplifications, other models, empirical data)
- Conceptual model scientifically sound
- Algorithms accurately reflect conceptual model
- Inputs and assumptions sound
- Sensitivity (important inputs)
- Uncertainty (probabilistic reflection of output)

Summary

 Prior to mining, predict mine drainage quality, solute release rates

• Need site conditions, mine plan

 Characterization/prediction program based on above

Summary

- Kinetic tests yield solute release rates
- Modeling required to apply laboratory results to field
 - Mine plan superimposed on existing conditions
 - Conceptual model based on science
 - Transparent
 - Sensitivity analysis
 - Output expressed as probability

References and Helpful Publications

Bucknam. C.H., White III, W., Lapakko, K.A. 2009. Standardization of Mine Waste Characterization Methods by ADTI-MMS. *In* Proc. Securing the Future and 8thICARD, June 22-26, 2009, Skellefteå, Sweden (CD ROM). 12 p.

Environment Canada. 2009. Environmental Code of Practice for Metal Mines.

http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=CBE3CD59-1&offset=1&toc=show

GARD Guide. www.gardguide.com.

 Lapakko, K.A. 2003a. Solid Phase Characterization for Metal Mine Waste Drainage Quality Prediction. Preprint 03-93 <u>In</u> Proc. 2003 SME Annual Meeting, February 24-27, Cincinnati, OH (CD-ROM). Soc. For Mining, Metallurgy, and Exploration, Inc. Littleton, CO.

_____. 2003b. Developments in Humidity-Cell Tests and their Application. <u>In</u> Environmental Aspects of Mine Wastes (J.L. Jambor, D.W. Blowes, A.I.M. Ritchie, eds.). Mineralogical Association of Canada Short Course Volume 31. p. 147-164.

Maest A.S., Kuipers, J.R., Travers, C.I., Atkins, D.A. 2005. Predicting water quality at hardrock mines: methods and models, uncertainties and state-of-the-art. Kuipers & Associates and Buka Environmental.

http://www.ceaa-acee.gc.ca/050/documents_staticpost/cearref_3394/hearings/SM09.pdf

References and Helpful Publications

Miranda, M., Chambers, D., Coumans, C. 2005. Framework for responsible mining: A guide to Evolving standards.

http://www.csp2.org/reports/Framework%20for%20Responsible%20Mining%20Executive%20Sum mary.pdf

Morin, K., Hutt, N. Mines, Mining, and the Environment, Case studies. http://www.mdag.com

MMSD. 2002. Breaking New Ground: The Report of the Mining, Minerals and Sustainable Development Project, May 2002. Earthscan Publications Ltd., London.

http://www.iied.org/pubs/pdfs/9084IIED.pdf

- National Research Council. 2007. Models in the Environmental Regulatory Decision Process. National Academy of Sciences. 286 p.
 - <u>http://www.nap.edu/openbook.php?record_id=11972</u> Price W.A. 2009. Prediction manual of drainage chemistry from sulphidic geologic materials. MEND Report 1.20.1.

http://wman-info.org/resources/technicalreports/MENDPredictionManual-Jan05.pdf/file_view_

White, W.W. III, Lapakko, K.A., Cox, R.L. 1999. Static-test methods most commonly used to predict acid-mine drainage: Practical guidelines for use and interpretation. <u>In</u> Reviews in Economic Geology, Volume 7. The Environmental Geochemistry of Mineral Deposits, Part A: Processes, techniques, techniques, and health issues. G.S. Plumlee, M.J. Logsdon (eds.). Society of Economic Geologists. p. 325-338.