Application of the mass-loading approach to understanding the impacts of mining

Briant A. Kimball, Robert L. Runkel, Katherine Walton-Day, David A. Nimick, and Kenneth L. Bencala

Natural iron bog augmented by mining, American Fork, UT

U.S. Geological Survey Energy, Minerals, and Environmental Health Toxic Substances Hydrology Program <u>http://toxics.usgs.gov/</u> sites/upper_ark_page.html

Multi-Disciplinary Team

- Kimball Mass loading (sources) / Mass transfer of reactions
- Runkel Reactive transport model development / application
- Walton-Day Remediation options / TMDL / fracture pathways
- Nimick Diel cycling of metals
- Bencala GW/SW interaction / Catchment connections
- Fuller Biogeochemical reactions / metal bonding
- ➢ Wanty / Verplanck Metal isotopes, rare earths, geology
- Hornberger / Cain / Croteau Contaminant pathways to receptors

Mass-Loading Approach

Topic: Applications of a mass-loading approach Question: What is the value of a quantitative approach? Significance: Answers for important questions

What do we need to know?

- Source identification which sources of metals are the most significant?
- What contributions are from ARD ("background") vs. AMD?
- What are remediation options?
- Divide stream into segments and sample inflows
- Characterization of the watershed important
 - Geology & structure
 - Ore deposit types
 - Hydrology (often missing)
 - > Chemistry of inflows
- Integration of the catchment "The truth is in the stream"

Provide the Hydrologic Context for Synoptic Sampling

- Quantify total streamflow (stream + hyporheic) for mountain streams
- Collection of many samples for watershedscale synoptic sampling
- Data needed for OTEQ transport simulations
- Evaluation of remediation options (TMDL)
- Dilution vs. attenuation

Typically studies are in upland mountain streams during baseflow conditions

Must quantify the hydrology to understand the variation of in-stream chemistry

Types of tracers and additions

Ionic tracers

≻ Low pH: LiCl, LiBr ➢ High pH: NaBr, NaCl Tracer additions ≻ "Slug" \succ Known mass + response ≻ Gives loss/ gain ➢ Continuous Known rate and concentration \blacktriangleright Gain only

Adding the salt

Pump setup for tracer injection

- Continuous injection of ionic tracer
- Metered pump
 - Pulse every 6 seconds
 - Data logger counts revolutions; adjusts voltage
 - Allows for a constant injection rate despite battery change
- Synoptic sampling at "plateau" after downvalley flow is "saturated" with tracer

Quantify stream hydrodynamics

- Magnitude of stream flow, Q, from plateau
- Travel time
 gives velocity
 (Q/Area)
- Shape gives mixing (dispersion and transient storage)

Examples of Applications

- Reconstruct
 Pre-Mining Conditions Setting Remediation
 Goals
- 2. Quantifying Remediation Options
- Quantifying Changes in Biogeochemical Systems in Response to Remediation

1. How clean is clean?

- Setting goals for remediation – what is "fair?"
 - Rarely have pre-mining samples
 - Divide current quality into mining vs. nonmining
- Multidisciplinary approaches
 - Analog unmined catchments
 - ➢ Ferricrete / Cu
 - OTEQ application

OTEQ approach

- Uses results of a mass-loading study
- Calibration of OTEQ model
- Identification of mined vs. un-mined inflows
 - Geologic constraints
 - > Historical information
 - Stable isotopes of metals
- "Remove" likely mining sources in the model
- Simulate the resulting in-stream concentrations

Mined vs. Un-mined loading

OTEQ: One-Dimensional Transport w/ Equilibrium Chemistry

Couples: Transport (OTIS)

 $\frac{\partial C}{\partial t} = -\frac{Q}{A}\frac{\partial C}{\partial x} + \frac{1}{A}\frac{\partial}{\partial x}(AD\frac{\partial C}{\partial x}) + \frac{q_L}{A}(C_L - C) + \alpha(C_s - C)$

= Advection + Dispersion + Inflow + Storage

Calibration of Copper

120 -

Pre-Mining Simulation

pH: 3.9 to 5.1

Conclusion: Weathering of hydrothermally altered rocks before mining started would have prohibited certain aquatic life Fe: 560 to 360 μg/L SO₄: 38 to 25 mg/L Cu: 105 to 18 μg/L Zn: 3,920 to 1,320 μg/L

2. What to do? *Little Cottonwood Creek, UT*

Main sources

- Columbus-Rexall discharge
- Wasatch Tunnel Bulkhead
- Mountain leaking

DISTANCE, IN METERS

Remediation Options

Columbus-Rexall discharge

• 4 levels of fen treatment

2 studies for data "on/off"

16 options 3 sites Acute/Chronic

> 96 OTEQ runs

Wasatch Tunnel

• 4 levels of release from bulkhead (dilution)

Site #3, Chronic Zn standard

Tunnel / Fen	Fen Off 2.45 mg/L Zn	Fen On 0.44 mg/L Zn	On + 20% 0.35 mg/L Zn	On + 20% + 29% more 0.25 mg/L Zn
WT 100%	51	11	10	8
WT 75 %	43	-1	-2	-4
WT 50 %	35	-15	-17	-19
WT 25 %	25	-32	-35	-37

3. What happened ? Silver Bow Creek, (Butte) MT

Future reconstruction

Sulfate profile (Range of diel samples indicated)

- Sulfate increases slightly downstream from reconstruction
- German Gulch dilutes the sulfate
- High sulfate concentration is a result of upstream mining
- No apparent increase from reconstruction activities between 2,967 and 4,617 m

Zinc Profile

- Large increase downstream from the end of reconstruction (2,005 to 2,957 m)
- Large increase due to reconstruction activity (from 2,967 to
 - 8,634 m)
- Substantial amount of colloidal zinc
- Temporal variation of zinc from 11.3 to 98.5 µg/L

Diel zinc variations

- Samples from auto-sampler show the large diel variation in zinc concentration
- Did not find this variation in other metals
- Manganese only showed variation on the first day - ?)

Copper profile

- Increase downstream from the end of reconstruction
- Increase from reconstruction activity
- Mostly colloidal copper when stirred up by construction
- Filtered copper downstream is near median of diel samples

Remediation in Silver Bow

- Low metal concentrations through LAO
- Results of reconstruction are demonstrated in the lower concentrations of metals
- Construction activity
 increases colloidal metal
 concentrations
- Returned this year to get
 undisturbed samples

What did we get?

- Distinguish between AMD and ARD (pre-mining) giving in-stream concentrations
- Evaluation multiple remediation options (save \$\$\$)
- Quantify what really happens with remediation
- Current application to permitting – Stibnite, ID

Contact information: <u>bkimball@usgs.gov</u> http://toxics.usgs.gov/mining

References

Methods:

Kimball,B.A., Runkel,R.L., Walton-Day,K., and Bencala,K.E., 2002, Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA: Applied Geochemistry, v. 17, no. 9, p. 1183-1207.

Kimball,B.A., Runkel,R.L., and Walton-Day,K., 2003, Use of field-scale experiments and reactive solutetransport modelling to evaluate remediation alternatives in streams affected by acid mine drainage, *in* Jambor, J. L., Blowes, D. W., and Ritchie, A. I. M., eds., Environmental aspects of mine wastes (31 ed.): Vancouver, British Columbia, Mineralogical Association of Canada, p. 261-282.

Redwell Basin

Kimball,B.A., Runkel,R.L., Wanty,R.B., and Verplanck,P.L., 2010, Reactive solute-transport simulation of pre-mining metal concentrations in mine-impacted catchments: Redwell Basin, Colorado, USA: Chemical Geology, v. 269, p. 124-136.

Little Cottonwood Remediation

Kimball,B.A., and Runkel,R.L., 2010, Evaluating remediation alternatives for mine drainage, Little Cottonwood Creek, Utah, USA: Environmental Earth Science, v. 60, p. 1021-1036.